Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3885, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391397

RESUMO

Nuclear Magnetic Resonance (NMR) spectroscopy is a most powerful molecular characterization and quantification technique, yet two major persistent factors limit its more wide-spread applications: poor sensitivity, and intricate complex and expensive hardware required for sophisticated experiments. Here we show NMR with a single planar-spiral microcoil in an untuned circuit with hyperpolarization option and capability to execute complex experiments addressing simultaneously up to three different nuclides. A microfluidic NMR-chip in which the 25 nL detection volume can be efficiently illuminated with laser-diode light enhances the sensitivity by orders of magnitude via photochemically induced dynamic nuclear polarization (photo-CIDNP), allowing rapid detection of samples in the lower picomole range (normalized limit of detection at 600 MHz, nLODf,600, of 0.01 nmol Hz1/2). The chip is equipped with a single planar microcoil operating in an untuned circuit that allows different Larmor frequencies to be addressed simultaneously, permitting advanced hetero-, di- and trinuclear, 1D and 2D NMR experiments. Here we show NMR chips with photo-CIDNP and broadband capabilities addressing two of the major limiting factors of NMR, by enhancing sensitivity as well as reducing cost and hardware complexity; the performance is compared to state-of-the-art instruments.


Assuntos
Imageamento por Ressonância Magnética , Microfluídica , Lasers Semicondutores , Luz , Espectroscopia de Ressonância Magnética
2.
ACS Nano ; 17(1): 606-620, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36538410

RESUMO

The preparation of bulk quantities of 13C-labeled graphene materials is relevant for basic investigations and for practical applications. In addition, 13C-labeled graphene materials can be very useful in biological and environmental studies, as they may allow the detection of graphene or its derivatives in cells or organs. In this paper, we describe the synthesis of 13C-labeled graphene materials (few-layer graphene, FLG, and graphene oxide, GO) on a tens of mg scale, starting from 13C-labeled methane to afford carbon fibers, followed by liquid-phase exfoliation (FLG) or oxidation (GO). The materials have been characterized by several analytical and microscopic techniques, including Raman and nuclear magnetic resonance spectroscopies, thermogravimetric analysis, X-ray photoelectron spectroscopy, and X-ray powder diffraction. As a proof of concept, the distribution of the title compounds in cells has been investigated. In fact, the analysis of the 13C/12C ratio with isotope ratio mass spectrometry (IRMS) allows the detection and quantification of very small amounts of material in cells or biological compartments with high selectivity, even when the material has been degraded. During the treatment of 13C-labeled FLG with HepG2 cells, 4.1% of the applied dose was found in the mitochondrial fraction, while 4.9% ended up in the nuclear fraction. The rest of the dose did not enter into the cell and remained in the plasma membrane or in the culture media.


Assuntos
Grafite , Grafite/química , Oxirredução , Membrana Celular , Espectroscopia Fotoeletrônica , Difração de Raios X
3.
Artigo em Inglês | MEDLINE | ID: mdl-36554931

RESUMO

As academic literature has shown, there is a preference among older adults to experience old age independently, in their own homes, giving shape to what has been called ageing in place. This phenomenon links residence, life cycle, and the experience of old age. Although it depends on many factors (housing characteristics, the elderly's economy, or their social support, among others) it is based on place attachment as a key aspect, which comprises two different but interwoven dimensions: the home (private space) and the neighbourhood (social space), understood as an extended sphere of the home. Despite its importance, and beyond the consensus that the time spent in a place increases attachment to it, the processes whereby place attachment is constructed by the elderly and the role of the experience of neighbourhood are little known. This article intended to delve into the meaning of place attachment, its importance, and how it is built by the elderly population in urban areas. For this purpose, a qualitative study was conducted in Spain, selecting Madrid (the biggest city in the country) as a case study of how place attachment is shaped in an urban setting. To obtain in-depth information, data were collected through ethnographic interviews with 37 people aged 65-95 and 1 focus group among elderly aged 65-71. The most relevant finding of the qualitative analysis is the emotional significance of attachment to the local space as an element that enables continuity-as opposed to the rupture to which we associate old age- in the experience of the life cycle of the elderly. It should be noted that some of the results are conditioned by the specificities of Spanish society, particularly with regard to family ties. Potential extrapolations to other realities should take this point into account.


Assuntos
Envelhecimento , Vida Independente , Humanos , Idoso , Envelhecimento/psicologia , Características de Residência , Habitação , Meio Social
4.
J Org Chem ; 87(5): 3529-3545, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35143202

RESUMO

The irradiation of (Z)-2-phenyl-4-aryliden-5(4H)-oxazolones 1 in deoxygenated CH2Cl2 at 25 °C with blue light (465 nm) in the presence of [Ru(bpy)3](BF4)2 (5% mole ratio) as a triplet photocatalyst promotes the [2+2] photocycloaddition of the C═C bonds of the 4-arylidene moiety, thus allowing the completely regio- and stereoselective formation of cyclobutane-bis(oxazolone)s 2 as single stereoisomers. Cyclobutanes 2 have been unambiguously characterized as the µ-isomers and contain two E-oxazolones coupled in an anti-head-to-head form. The use of continuous-flow techniques in microreactors allows the synthesis of cyclobutanes 2 in only 60 min, compared with the 24-48 h required in batch mode. Ring opening of the oxazolone heterocycle in 2 with a base affords the corresponding 1,2-diaminotruxinic bis-amino esters 3, which are also obtained selectively as µ-isomers. The ruthenium complex behaves as a triplet photocatalyst, generating the reactive excited state of the oxazolone via an energy-transfer process. This reactive excited state has been characterized as a triplet diradical 3(E/Z)-1* by laser flash photolysis (transient absorption spectroscopy). This technique also shows that this excited state is the same when starting from either (Z)- or (E)-oxazolones. Density functional theory calculations show that the first step of the [2+2] cycloaddition between 3(E/Z)-1* and (Z)-1 is formation of the C(H)-C(H) bond and that (Z) to (E) isomerization takes place at the 1,4-diradical thus formed.


Assuntos
Ciclobutanos , Rutênio , Aminoácidos , Oxazolona/química , Rutênio/química , Estereoisomerismo
5.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206372

RESUMO

A choline-binding module from pneumococcal LytA autolysin, LytA239-252, was reported to have a highly stable nativelike ß-hairpin in aqueous solution, which turns into a stable amphipathic α-helix in the presence of micelles. Here, we aim to obtain insights into this DPC-micelle triggered ß-hairpin-to-α-helix conformational transition using photo-CIDNP NMR experiments. Our results illustrate the dependency between photo-CIDNP phenomena and the light intensity in the sample volume, showing that the use of smaller-diameter (2.5 mm) NMR tubes instead of the conventional 5 mm ones enables more efficient illumination for our laser-diode light setup. Photo-CIDNP experiments reveal different solvent accessibility for the two tyrosine residues, Y249 and Y250, the latter being less accessible to the solvent. The cross-polarization effects of these two tyrosine residues of LytA239-252 allow for deeper insights and evidence their different behavior, showing that the Y250 aromatic side chain is involved in a stronger interaction with DPC micelles than Y249 is. These results can be interpreted in terms of the DPC micelle disrupting the aromatic stacking between W241 and Y250 present in the nativelike ß-hairpin, hence initiating conversion towards the α-helix structure. Our photo-CIDNP methodology represents a powerful tool for observing residue-level information in switch peptides that is difficult to obtain by other spectroscopic techniques.


Assuntos
Micelas , Peptídeos/química , Conformação Proteica em alfa-Hélice , Tirosina/química , Luz , Ressonância Magnética Nuclear Biomolecular , Processos Fotoquímicos , Análise Espectral
6.
Sci Rep ; 10(1): 18407, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110217

RESUMO

Small few-layer graphene (sFLG), a novel small-sized graphene-related material (GRM), can be considered as an intermediate degradation product of graphene. GRMs have a promising present and future in the field of biomedicine. However, safety issues must be carefully addressed to facilitate their implementation. In the work described here, the effect of sub-lethal doses of sFLG on the biology of human HaCaT keratinocytes was examined. A one-week treatment of HaCaTs with sub-lethal doses of sFLG resulted in metabolome remodeling, dampening of the mitochondrial function and a shift in the redox state to pro-oxidant conditions. sFLG raises reactive oxygen species and calcium from 24 h to one week after the treatment and this involves the activation of NADPH oxidase 1. Likewise, sFLG seems to induce a shift from oxidative phosphorylation to glycolysis and promotes the use of glutamine as an alternative source of energy. When sub-toxic sFLG exposure was sustained for 30 days, an increase in cell proliferation and mitochondrial damage were observed. Further research is required to unveil the safety of GRMs and degradation-derived products before their use in the workplace and in practical applications.


Assuntos
Grafite/toxicidade , Pele/efeitos dos fármacos , Pele/metabolismo , Cálcio/metabolismo , Homeostase , Humanos , Fosforilação Oxidativa , Espécies Reativas de Oxigênio/metabolismo , Pele/citologia
7.
Nanoscale Adv ; 2(9): 3954-3962, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36132804

RESUMO

High-resolution solution Nuclear Magnetic Resonance (NMR) spectroscopy has been used to gain insights into the mechanism of the formation of gold, platinum and gold-platinum alloyed nanoparticles using metal precursors and tetrakis(hydroxymethyl)phosphonium chloride (THPC) as starting materials. THPC is widely used in nanochemistry as a reductant and stabilizer of nanoparticles, however the identity of the species responsible for each role is unknown. The multinuclear study of the reaction media by NMR spectroscopy allowed us to elucidate the structure of all the compounds that participate in the transformation from the metal salt precursor to the reduced metal that forms the nanoparticle, thus clarifying the controversy found in the literature regarding the formation of THPC-based compounds. The progress of the reaction was monitored from the initial moments of the synthesis to the end of the reaction and after long periods of time. Insights into the dual role of THPC were gained, identifying methanol and hydrogen as the actual reducing agents, and tris(hydroxymethyl)phosphine oxide (THPO) as the real stabilizing agent. Finally, the different stabilities of gold and platinum nanoparticles can be attributed to the different catalytic activities of the metals.

8.
J Am Chem Soc ; 140(49): 16988-17000, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30430829

RESUMO

Polyproline II (PPII) helices play vital roles in biochemical recognition events and structures like collagen and form part of the conformational landscapes of intrinsically disordered proteins (IDPs). Nevertheless, this structure is generally hard to detect and quantify. Here, we report the first thorough NMR characterization of a PPII helical bundle protein, the Hypogastrura harveyi "snow flea" antifreeze protein (sfAFP). J-couplings and nuclear Overhauser enhancement spectroscopy confirm a natively folded structure consisting of six PPII helices. NMR spectral analyses reveal quite distinct Hα2 versus Hα3 chemical shifts for 28 Gly residues as well as 13Cα, 15N, and 1HN conformational chemical shifts (Δδ) unique to PPII helical bundles. The 15N Δδ and 1HN Δδ values and small negative 1HN temperature coefficients evince hydrogen-bond formation. 1H-15N relaxation measurements reveal that the backbone structure is generally highly rigid on ps-ns time scales. NMR relaxation parameters and biophysical characterization reveal that sfAFP is chiefly a dimer. For it, a structural model featuring the packing of long, flat hydrophobic faces at the dimer interface is advanced. The conformational stability, measured by amide H/D exchange to be 6.24 ± 0.2 kcal·mol-1, is elevated. These are extraordinary findings considering the great entropic cost of fixing Gly residues and, together with the remarkable upfield chemical shifts of 28 Gly 1Hα, evidence significant stabilizing contributions from CαHα ||| O═C hydrogen bonds. These stabilizing interactions are corroborated by density functional theory calculations and natural bonding orbital analysis. The singular conformational chemical shifts, J-couplings, high hNOE ratios, small negative temperature coefficients, and slowed H/D exchange constitute a unique set of fingerprints to identify PPII helical bundles, which may be formed by hundreds of Gly-rich motifs detected in sequence databases. These results should aid the quantification of PPII helices in IDPs, the development of improved antifreeze proteins, and the incorporation of PPII helices into novel designed proteins.

9.
Angew Chem Int Ed Engl ; 57(40): 13231-13236, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30198144

RESUMO

A visible-light-induced Negishi cross-coupling is enabled by the activation of a Pd0 -Zn complex. With this photocatalytic method, the scope of deactivated aryl halides that can be employed in the Negishi coupling was significantly expanded. NMR experiments conducted in the presence and absence of light confirmed that the formation of the palladium-zinc complex is key for accelerating the oxidative addition step.

10.
Food Chem ; 265: 101-110, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29884360

RESUMO

The following oligostilbenoids were isolated from extracts of Vitis vinifera L. Pinot Noir grape canes produced at a pilot-plant scale: (E)-ε-viniferin, (E)-resveratrol, (E)-piceatannol, ampelopsin A, vitisin B, pallidol, (E)-δ-viniferin, (E)-ω-viniferin, (E)-trans-cis-miyabenol C, isorhapontigenin, scirpusin A, and a new isomer named isoscirpusin A. The antioxidant capacity of the isolated stilbenoids was studied by three different assays, and their 50% inhibition concentration (IC50) against cancer cells was determined by MTT reduction assay. Besides (E)-resveratrol, stilbenoids have outstanding antioxidant capacity in the ORAC-FL assay. The strongest antiproliferative effect was observed for (E)-piceatannol and ampelopsin A against the bladder cancer cell line J82. (E)-Piceatannol has inhibitory effect on human lung cancer SK-MES-1 cells. Moreover, the whole extract has antiproliferative effect on all tested cell lines. In conclusion, beside (E)-resveratrol, grape cane extract contains oligostilbenoids with potential health benefits. This underexploited viticultural residue has the potential to produce valuable phytochemicals or ingredients in functional foods.


Assuntos
Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Estilbenos/isolamento & purificação , Estilbenos/farmacologia , Vitis/química , Antineoplásicos/química , Antioxidantes/química , Linhagem Celular Tumoral , Citoproteção/efeitos dos fármacos , Humanos , Estilbenos/química
11.
Nanoscale ; 10(24): 11604-11615, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29892760

RESUMO

Graphene-related materials (GRMs) such as graphene oxide (GO) and few-layer graphene (FLG) are used in multiple biomedical applications; however, there is still insufficient information available regarding their interactions with the main biological barriers such as skin. In this study, we explored the effects of GO and FLG on HaCaTs human skin keratinocytes, using NMR-based metabolomics and fluorescence microscopy to evaluate the global impact of each GRM on cell fate and damage. GO and FLG at low concentrations (5 µg mL-1) induced a differential remodeling of the metabolome, preceded by an increase in the level of radical oxygen species (ROS) and free cytosolic Ca2+. These changes are linked to a concentration-dependent increase in cell death by triggering apoptosis and necrosis, the latter being predominant at higher concentrations of the nanostructures. In addition, both compounds reduce the ability of HaCaT cells to heal wounds. Our results demonstrate that the GO and FLG used in this study, which mainly differ in their oxidation state, slightly trigger differential effects on HaCaTs cells, but with evident outcomes at the cellular and molecular levels. Their behavior as pro-apoptotic/necrotic substances and their ability to inhibit cell migration, even at low doses, should be considered in the development of future applications.


Assuntos
Grafite/farmacologia , Queratinócitos/efeitos dos fármacos , Nanoestruturas , Apoptose , Linhagem Celular , Proteínas Filagrinas , Humanos , Óxidos , Espécies Reativas de Oxigênio , Pele/citologia , Pele/efeitos dos fármacos
12.
Angew Chem Int Ed Engl ; 57(28): 8473-8477, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29566297

RESUMO

The merging of photoredox and transition-metal catalysis has become one of the most attractive approaches for carbon-carbon bond formation. Such reactions require the use of two organo-transition-metal species, one of which acts as a photosensitizer and the other one as a cross-coupling catalyst. We report herein an exogenous-photosensitizer-free photocatalytic process for the formation of carbon-carbon bonds by direct acceleration of the well-known nickel-catalyzed Negishi cross-coupling that is based on the use of two naturally abundant metals. This finding will open new avenues in cross-coupling chemistry that involve the direct visible-light absorption of organometallic catalytic complexes.

13.
Nat Commun ; 9(1): 108, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29317665

RESUMO

Among the methods to enhance the sensitivity of nuclear magnetic resonance (NMR) spectroscopy, small-diameter NMR coils (microcoils) are promising tools to tackle the study of mass-limited samples. Alternatively, hyperpolarization schemes based on dynamic nuclear polarization techniques provide strong signal enhancements of the NMR target samples. Here we present a method to effortlessly perform photo-chemically induced dynamic nuclear polarization in microcoil setups to boost NMR signal detection down to sub-picomole detection limits in a 9.4T system (400 MHz 1H Larmor frequency). This setup is unaffected by current major drawbacks such as the use of high-power light sources to attempt uniform irradiation of the sample, and accumulation of degraded photosensitizer in the detection region. The latter is overcome with flow conditions, which in turn open avenues for complex applications requiring rapid and efficient mixing that are not easily achievable on an NMR tube without resorting to complex hardware.

14.
Anal Chem ; 90(3): 1542-1546, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29280614

RESUMO

We report the use of a small-volume nuclear-magnetic-resonance (NMR)-spectroscopy device with integrated fiber-optics for the real-time detection of UV-vis-light-assisted chemical reactions. An optical fiber is used to guide the light from LEDs or a laser diode positioned safely outside the magnet toward the 25 nL detection volume and placed right above the microfluidic channel, irradiating the transparent back of the NMR chip. The setup presented here overcomes the limitations of conventional NMR systems for in situ UV-vis illumination, with the microchannel permitting efficient light penetration even in highly concentrated solutions, requiring lower-power light intensities, and enabling high photon flux. The efficacy of the setup is illustrated with two model reactions activated at different wavelengths.

15.
Beilstein J Org Chem ; 13: 285-300, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28326137

RESUMO

Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the µL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed.

16.
Beilstein J Org Chem ; 12: 2181-2188, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27829925

RESUMO

Diels-Alder cycloaddition between cyclopentadiene and p-benzoquinone has been studied in the confined space of a pure silica zeolite Beta and the impact on reaction rate due to the concentration effect within the pore and diffusion limitations are discussed. Introduction of Lewis or Brønsted acid sites on the walls of the zeolite strongly increases the reaction rate. However, contrary to what occurs with mesoporous molecular sieves (MCM-41), Beta zeolite does not catalyse the retro-Diels-Alder reaction, resulting in a highly selective catalyst for the cycloaddition reaction.

17.
Chemistry ; 22(33): 11643-51, 2016 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-27404562

RESUMO

Promising materials have been designed and fully characterised by an effective interaction between versatile platforms such as carbon nanohorns (CNHs) and conjugated molecules based on thiophene derivatives. Easy and non-aggressive methods have been described for the synthesis and purification of the final systems. Oligothiophenephenylvinylene (OTP) systems with different geometries and electron density are coupled to the CNHs. A wide range of characterization techniques have been used to confirm the effective interaction between the donor (OTP) and the acceptor (CNH) systems. These hybrid materials show potential for integration into solar cell devices. Importantly, surface-enhanced Raman spectroscopy (SERS) effects are observed without the presence of any metal surface in the system. Theoretical calculations have been performed to study the optimised geometries of the noncovalent interaction between the surface and the organic molecule. The calculations allow information on the monoelectronic energies of HOMO-LUMO orbitals and band gap of different donor systems to be extracted.

18.
Chemistry ; 22(1): 144-52, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26597315

RESUMO

The stereoselective synthesis of ε-isomers of dimethyl esters of 1,3-diaminotruxillic acid in three steps is reported. The first step is the ortho-palladation of (Z)-2-aryl-4-aryliden-5(4H)-oxazolones 1 to give dinuclear complexes 2 with bridging carboxylates. The reaction occurs through regioselective activation of the ortho-CH bond of the 4-arylidene ring in carboxylic acids. The second step is the [2+2]-photocycloaddition of the CC exocyclic bonds of the oxazolone skeleton in 2 to afford the corresponding dinuclear ortho-palladated cyclobutanes 3. This key step was performed very efficiently by using LED light sources with different wavelengths (465, 525 or 625 nm) in flow microreactors. The final step involved the depalladation of 3 by hydrogenation in methanol to afford the ε-1,3-diaminotruxillic acid derivatives as single isomers.

19.
Anal Chem ; 87(20): 10547-55, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26383715

RESUMO

Conventional methods to determine the kinetic parameters for a certain reaction require multiple, separate isothermal experiments, resulting in time- and material-consuming processes. Here, an approach to determine the kinetic information within a single nonisothermal on-flow experiment is presented, consuming less than 10 µmol of reagents and having a total measuring time of typically 10 min. This approach makes use of a microfluidic NMR chip hyphenated to a continuous-flow microreactor and is based on the capabilities of the NMR chip to analyze subnanomole quantities of material in the 25 nL detection volume. Importantly, useful data are acquired from the microreactor platform in specific isothermal and nonisothermal frames. A model fitting the experimental data enables rapid determination of kinetic parameters, as demonstrated for a library of isoxazole and pyrazole derivatives.

20.
Arterioscler Thromb Vasc Biol ; 35(4): 938-47, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25722432

RESUMO

OBJECTIVE: Calcific aortic valve disease (CAVD) is a significant cause of morbidity and mortality, which affects ≈1% of the US population and is characterized by calcific nodule formation and stenosis of the valve. Klotho-deficient mice were used to study the molecular mechanisms of CAVD as they develop robust aortic valve (AoV) calcification. Through microarray analysis of AoV tissues from klotho-deficient and wild-type mice, increased expression of the gene encoding cyclooxygenase 2 (COX2; Ptgs2) was found. COX2 activity contributes to bone differentiation and homeostasis, thus the contribution of COX2 activity to AoV calcification was assessed. APPROACH AND RESULTS: In klotho-deficient mice, COX2 expression is increased throughout regions of valve calcification and is induced in the valvular interstitial cells before calcification formation. Similarly, COX2 expression is increased in human diseased AoVs. Treatment of cultured porcine aortic valvular interstitial cells with osteogenic media induces bone marker gene expression and calcification in vitro, which is blocked by inhibition of COX2 activity. In vivo, genetic loss of function of COX2 cyclooxygenase activity partially rescues AoV calcification in klotho-deficient mice. Moreover, pharmacological inhibition of COX2 activity in klotho-deficient mice via celecoxib-containing diet reduces AoV calcification and blocks osteogenic gene expression. CONCLUSIONS: COX2 expression is upregulated in CAVD, and its activity contributes to osteogenic gene induction and valve calcification in vitro and in vivo.


Assuntos
Valva Aórtica/efeitos dos fármacos , Calcinose/prevenção & controle , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Doenças das Valvas Cardíacas/prevenção & controle , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Idoso , Idoso de 80 Anos ou mais , Animais , Valva Aórtica/enzimologia , Valva Aórtica/patologia , Biomarcadores/metabolismo , Calcinose/enzimologia , Calcinose/genética , Calcinose/patologia , Estudos de Casos e Controles , Celecoxib , Células Cultivadas , Ciclo-Oxigenase 2/genética , Modelos Animais de Doenças , Feminino , Glucuronidase/deficiência , Glucuronidase/genética , Doenças das Valvas Cardíacas/enzimologia , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/patologia , Humanos , Proteínas Klotho , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Pessoa de Meia-Idade , Osteogênese/efeitos dos fármacos , Mutação Puntual , Sus scrofa , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...